Recent advances in contactless micromanipulation strategies have revolutionized prospects of robotic manipulators as next-generation tools for minimally invasive surgeries. In particular, acoustically powered phased arrays offer dexterous means of manipulation both in air and water. Inspired by these phased arrays, we present SonoTweezer: a compact, low-power, and lightweight array of immersible ultrasonic transducers capable of trapping and manipulation of sub-mm sized agents underwater. Based on a parametric investigation with numerical pressure field simulations, we design and create a six-transducer configuration, which is small compared to other reported multi-transducer arrays (16-256 elements). Despite the small size of array, SonoTw...