Water in the form of hydrous point defects in the crystal structure of pyroxenes (pxs) from mantle xenoliths is frequently used to trace the water content in the lithospheric mantle. However, little is known on the mechanism that allows xenoliths to preserve deep hydrogen (H) signatures and if we can avoid complete or partial reset by reaction with the host magma during transport. Especially, it is unknown: 1) how much water content of xenoliths is modified by the eruption mode (effusive versus explosive) and during lava emplacement 2) how grain boundaries (gb) can affect H exchange in the xenolith with the surrounding melt. The aim of this thesis is to provide better understanding on these two aspects of the preservation of water signature...