An always increasing knowledge on material properties as well as a progressively more sophisticated production technology make shape memory alloys (SMA) extremely interesting for the industrial world. At the same time, SMA devices are typically characterized by complex multi-axial stress states as well as non-homogeneous and non-isothermal conditions both in space and time. This aspect suggests the finite element method as a useful tool to help and improve application design and realization. With this aim, we focus on a three-dimensional macroscopic thermo-mechanical model able to reproduce the most significant SMA features (Int. J. Numer. Methods Eng. 2002; 55:1255– 1264), proposing a simple modification of such a model. However, the sugge...