In this work, probabilistic reachability over a finite horizon is investigated for a class of discrete time stochastic hybrid systems with control inputs. A suitable embedding of the reachability problem in a stochastic control framework reveals that it is amenable to two complementary interpretations, leading to dual algorithms for reachability computations. In particular, the set of initial conditions providing a certain probabilistic guarantee that the system will keep evolving within a desired ‘safe’ region of the state space is characterized in terms of a value function, and ‘maximally safe’ Markov policies are determined via dynamic programming. These results are of interest not only for safety analysis and design, but also for solvin...