Let $\mathfrak g$ be a semisimple Lie algebra, $\vartheta\in {\sf Aut}(\mathfrak g)$ a finite order automorphism, and $\mathfrak g_0$ the subalgebra of fixed points of $\vartheta$. Recently, we noticed that using $\vartheta$ one can construct a pencil of compatible Poisson brackets on $\mathcal S(\mathfrak g)$, and thereby a `large' Poisson-commutative subalgebra $\mathcal Z(\mathfrak g,\vartheta)$ of $\mathcal S(\mathfrak g)^{\mathfrak g_0}$. In this article, we study invariant-theoretic properties of $(\mathfrak g,\vartheta)$ that ensure good properties of $\mathcal Z(\mathfrak g,\vartheta)$. Associated with $\vartheta$ one has a natural Lie algebra contraction $\mathfrak g_{(0)}$ of $\mathfrak g$ and the notion of a good generating syste...