The Gauss–Diffusion processes are here considered and some relations between their infinitesimal moments and mean and covariance functions are remarked. The corresponding linear stochastic differential equations are re-written specifying the coefficient functions and highlighting their meanings in theoretical and application contexts. We resort the Doob-transformation of a Gauss–Markov process as a transformed Wiener process and we represent some time-inhomogeneous processes as transformed Ornstein–Uhlenbeck process. The first passage time problem is considered in order to discuss some neuronal models based on Gauss–Diffusion processes. We recall some different approaches to solve the first passage time problem specifying when a closed-form...