Rankings and partial rankings are ubiquitous in data analysis, yet there is relatively little work in the classification community that uses the typical properties of rankings. We review the broader literature that we are aware of, and identify a common building block for both prediction of rankings and clustering of rankings, which is also valid for partial rankings. This building block is the Kemeny distance, defined as the minimum number of interchanges of two adjacent elements required to transform one (partial) ranking into another. The Kemeny distance is equivalent to Kendall’sfor complete rankings, but for partial rankings it is equivalent to Emond and Mason’s extension of Tau index. For clustering, we use the flexible class of met...