Generalizziamo lo studio dei Groebner strata alle J-marked families Mf(J): se J è un ideale monomiale strongly stable dell'anello dei polinomi S = K[x_0,...,x_n], allora Mf(J) è la famiglia di tutti gli ideali omogenei I di S tali che l'insieme dei monomi che non appartengono a J sia una base del K-spazio vettoriale S/I. Mostriamo che un ideale I appartiene a Mf(J) se e solo se I è generato da uno speciale sistema di generatori, detto J-marked basis, che in un certo senso generalizza la nozione di base di Groebner e le sue proprietà algoritmiche. Usando le J-marked bases, proviamo che Mf(J) può essere dotato di una struttura di schema affine (J-marked scheme) che risulta essere anche omogenea e piatta nell'origine, grazie a delle proprietà ...
We characterise the class of one-cogenerated Pfaffian ideals whose natural generators form a Gröbner...
Abstract. We study the family of ideals i ⊂ R = K[x1,..., xn] whose quotients R/i share the same aff...
We characterise the class of one-cogenerated Pfaffian ideals whose natural generators form a Groebne...
Generalizziamo lo studio dei Groebner strata alle J-marked families Mf(J): se J è un ideale monomial...
Generalizziamo lo studio dei Groebner strata alle J-marked families Mf(J): se J è un ideale monomial...
Let $J$ be a strongly stable monomial ideal in $S=K[x_0,\ldots,x_n]$ and let $\cM(J)$ be the family ...
Let $J$ be a strongly stable monomial ideal in $S=K[x_0,\ldots,x_n]$ and let $\cM(J)$ be the family ...
Let $J$ be a strongly stable monomial ideal in $S=K[x_0,\ldots,x_n]$ and let $\cM(J)$ be the family ...
Let $J$ be a strongly stable monomial ideal in $S=K[x_0,\ldots,x_n]$ and let $\cM(J)$ be the family ...
AbstractLet J be a strongly stable monomial ideal in S=K[x0,…,xn] and let Mf(J) be the family of all...
AbstractLet J be a strongly stable monomial ideal in S=K[x0,…,xn] and let Mf(J) be the family of all...
Gröbner basis is a particular kind of a generating set of an ideal in the polynomial ring S = K[x1, ...
Gröbner basis is a particular kind of a generating set of an ideal in the polynomial ring S = K[x1, ...
An ideal I in a polynomial ring k[x1,...,xn] is a nonempty set closed under addition satisfying hf _...
An ideal I in a polynomial ring k[x1,...,xn] is a nonempty set closed under addition satisfying hf _...
We characterise the class of one-cogenerated Pfaffian ideals whose natural generators form a Gröbner...
Abstract. We study the family of ideals i ⊂ R = K[x1,..., xn] whose quotients R/i share the same aff...
We characterise the class of one-cogenerated Pfaffian ideals whose natural generators form a Groebne...
Generalizziamo lo studio dei Groebner strata alle J-marked families Mf(J): se J è un ideale monomial...
Generalizziamo lo studio dei Groebner strata alle J-marked families Mf(J): se J è un ideale monomial...
Let $J$ be a strongly stable monomial ideal in $S=K[x_0,\ldots,x_n]$ and let $\cM(J)$ be the family ...
Let $J$ be a strongly stable monomial ideal in $S=K[x_0,\ldots,x_n]$ and let $\cM(J)$ be the family ...
Let $J$ be a strongly stable monomial ideal in $S=K[x_0,\ldots,x_n]$ and let $\cM(J)$ be the family ...
Let $J$ be a strongly stable monomial ideal in $S=K[x_0,\ldots,x_n]$ and let $\cM(J)$ be the family ...
AbstractLet J be a strongly stable monomial ideal in S=K[x0,…,xn] and let Mf(J) be the family of all...
AbstractLet J be a strongly stable monomial ideal in S=K[x0,…,xn] and let Mf(J) be the family of all...
Gröbner basis is a particular kind of a generating set of an ideal in the polynomial ring S = K[x1, ...
Gröbner basis is a particular kind of a generating set of an ideal in the polynomial ring S = K[x1, ...
An ideal I in a polynomial ring k[x1,...,xn] is a nonempty set closed under addition satisfying hf _...
An ideal I in a polynomial ring k[x1,...,xn] is a nonempty set closed under addition satisfying hf _...
We characterise the class of one-cogenerated Pfaffian ideals whose natural generators form a Gröbner...
Abstract. We study the family of ideals i ⊂ R = K[x1,..., xn] whose quotients R/i share the same aff...
We characterise the class of one-cogenerated Pfaffian ideals whose natural generators form a Groebne...