The diffusion model for a population subject to Malthusian growth is generalized to include regulation effects. This is done by incorporating a logarithmic term in the regulation function in a way to obtain, in the absence of noise, an S-shaped growth law retaining the qualitative features of the logistic growth curve. The growth phenomenon is modeled as a diffusion process whose transition p.d.f. is obtained in closed form. Its steady state behavior turns out to be described by the lognormal distribution. The expected values and the mode of the transition p.d.f. are calculated, and it is proved that their time course is also represented by monotonically increasing functions asymptotically approaching saturation values. The first passage ti...