V několika posledních letech se metody strojového učení (zvláště ty zabývající se detekcí odlehlých hodnot - OD) v oblasti kyberbezpečnosti opíraly o zjišťování anomálií síťového provozu spočívajících v nových schématech útoků. Detekce anomálií v počítačových sítích reálného světa se ale stala stále obtížnější kvůli trvalému nárůstu vysoce objemných, rychlých a dimenzionálních průběžně přicházejících dat (SD), pro která nejsou k dispozici obecně uznané a pravdivé informace o anomalitě. Účinná detekční schémata pro vestavěná síťová zařízení musejí být rychlá a paměťově nenáročná a musejí být schopna se potýkat se změnami konceptu, když se vyskytnou. Cílem této disertace je zlepšit bezpečnost počítačových sítí zesílenou detekcí odlehlých hodn...