The present work is a part of a larger program to construct explicit combinatorial models for the (indecomposable) regular representation of the nilpotent factor $N$ in the Iwasawa decomposition of a semi-simple Lie algebra $\mathfrak g$, using the restrictions to $N$ of the simple finite dimensional modules of $\mathfrak g$. Such a description is given in \cite{[ABW]}, for the cas $\mathfrak g=\mathfrak{sl}(n)$. Here, we give the analog for the rank 2 semi simple Lie algebras (of type $A_1\times A_1$, $A_2$, $C_2$ and $G_2$). The algebra $\mathbb C[N]$ of polynomial functions on $N$ is a quotient, called reduced shape algebra of the shape algebra for $\mathfrak g$. Basis for the shape algebra are known, for instance the so called semi stan...
Le cône diamant a été introduit par N. J. Wildberger pour l'algèbre de Lie sl(n;R). C'est une présen...
In \cite{W}, there is a graphic description of any irreducible, finite dimensional $\mathfrak{sl}(3)...
In \cite{W}, there is a graphic description of any irreducible, finite dimensional $\mathfrak{sl}(3)...
The present work is a part of a larger program to construct explicit combinatorial models for the (i...
The diamond cone was introduced by N. J. Wildberger for the Lie algebra sl(n;R). It is a combinatori...
The diamond cone was introduced by N. J. Wildberger for the Lie algebra sl(n;R). It is a combinatori...
The diamond cone is a combinatorial description for a basis of an indecomposable module for the nilp...
The diamond cone is a combinatorial description for a basis of an indecomposable module for the nilp...
The diamond cone is a combinatorial description for a basis of an indecomposable module for the nilp...
The diamond cone is a combinatorial description for a basis in a indecomposable module for the nilpo...
The diamond cone is a combinatorial description for a basis in a indecomposable module for the nilpo...
AbstractThe diamond cone is a combinatorial description for a basis in a indecomposable module for t...
International audienceThe diamond cone is a combinatorial description for a basis of a natural indec...
Le cône diamant a été introduit par N. J. Wildberger pour l'algèbre de Lie sl(n;R). C'est une présen...
International audienceThe diamond cone is a combinatorial description for a basis of a natural indec...
Le cône diamant a été introduit par N. J. Wildberger pour l'algèbre de Lie sl(n;R). C'est une présen...
In \cite{W}, there is a graphic description of any irreducible, finite dimensional $\mathfrak{sl}(3)...
In \cite{W}, there is a graphic description of any irreducible, finite dimensional $\mathfrak{sl}(3)...
The present work is a part of a larger program to construct explicit combinatorial models for the (i...
The diamond cone was introduced by N. J. Wildberger for the Lie algebra sl(n;R). It is a combinatori...
The diamond cone was introduced by N. J. Wildberger for the Lie algebra sl(n;R). It is a combinatori...
The diamond cone is a combinatorial description for a basis of an indecomposable module for the nilp...
The diamond cone is a combinatorial description for a basis of an indecomposable module for the nilp...
The diamond cone is a combinatorial description for a basis of an indecomposable module for the nilp...
The diamond cone is a combinatorial description for a basis in a indecomposable module for the nilpo...
The diamond cone is a combinatorial description for a basis in a indecomposable module for the nilpo...
AbstractThe diamond cone is a combinatorial description for a basis in a indecomposable module for t...
International audienceThe diamond cone is a combinatorial description for a basis of a natural indec...
Le cône diamant a été introduit par N. J. Wildberger pour l'algèbre de Lie sl(n;R). C'est une présen...
International audienceThe diamond cone is a combinatorial description for a basis of a natural indec...
Le cône diamant a été introduit par N. J. Wildberger pour l'algèbre de Lie sl(n;R). C'est une présen...
In \cite{W}, there is a graphic description of any irreducible, finite dimensional $\mathfrak{sl}(3)...
In \cite{W}, there is a graphic description of any irreducible, finite dimensional $\mathfrak{sl}(3)...