In this article, we introduce the notion of near semiring with involution. Generalizing the theory of semirings we aim at represent quantum structures, such as basic algebras and orthomodular lattices, in terms of near semirings with involution. In particular, after discussing several properties of near semirings, we introduce the so-called Łukasiewicz near semirings, as a particular case of near semirings, and we show that every basic algebra is representable as (precisely, it is term equivalent to) a near semiring. In the particular case in which a Łukasiewicz near semiring is also a semiring, we obtain as a corollary a representation of MV-algebras as semirings. Analogously, by introducing a particular subclass of Łukasiewicz near semiri...