Random measures are the key ingredient for effective nonparametric Bayesian modeling of time-to-event data. This paper focuses on priors for the hazard rate function, a popular choice being the kernel mixture with respect to a gamma random measure. Sampling schemes are usually based on approximations of the underlying random measure, both a priori and conditionally on the data. Our main goal is the quantification of approximation errors through the Wasserstein distance. Though easy to simulate, the Wasserstein distance is generally difficult to evaluate, making tractable and informative bounds essential. Here we accomplish this task on the wider class of completely random measures, yielding a measure of discrepancy between many noteworthy r...