We consider a planar waveguide modeled by the Laplacian in a straight infinite strip with the Dirichlet boundary condition on the upper boundary and with frequently alternating boundary conditions (Dirichlet and Neumann) on the lower boundary. The homogenized operator is the Laplacian subject to the Dirichlet boundary condition on the upper boundary and to the Dirichlet or Neumann condition on the lower one. We prove the uniform resolvent convergence for the perturbed operator in both cases and obtain the estimates for the rate of convergence. Moreover, we construct the leading terms of the asymptotic expansions for the first band functions and the complete asymptotic expansion for the bottom of the spectrum