Non-local boundary conditions for Euclidean quantum gravity are proposed, consisting of an integro-differential boundary operator acting on metric perturbations. In this case, the operator P on metric perturbations is of Laplace type, subject to non-local boundary conditions; in contrast, its adjoint is the sum of a Laplacian and of a singular Green operator, subject to local boundary conditions. Self-adjointness of the boundary value problem is correctly formulated by looking at Dirichlet-type and Neumann-type realizations of the operator P, following recent results in the literature. The set of non-local boundary conditions for perturbative modes of the gravitational field is written in general form on the Euclidean 4-ball. For a p...