We study expansion and information diffusion properties of dynamic networks, i.e., networks whose topologies evolve over time as nodes enter or leave the system and edges are continuously created or destroyed. In this scenario, we investigate flooding as a basic information diffusion mechanism.We are interested in models that are likely to result in sparse networks, i.e., in networks containing O(n) edges, with n the number of nodes that are present at any given time of interest, with a focus on models in which edges are created randomly according to simple probabilistic mechanisms, rather than according to carefully designed distributed algorithms. In this perspective, in all models we consider, upon joining the network, a node connects to...