Radial basis functions (RBFs) based mesh morphing allows to adapt the shape of a computational grid onto a new one by updating the position of all its nodes. Usually nodes on surfaces are used as sources to define the interpolation field that is propagated into the volume mesh by the RBF. The method comes with two distinctive advantages that makes it very flexible: it is mesh independent and it allows a node wise precision. There are however two major drawbacks: large data set management and excessive distortion of the morphed mesh that may occur. Two radial kernels are widely adopted to overtake such issues: the bi-harmonic spline (BHS) and the Wendland C2 (WC2). The BHS minimizes the mesh distortion but it is computational intense as a de...