We prove a simple sufficient criteria to obtain some Hardy inequalities on Rie- mannian manifolds related to quasilinear second-order differential operator ∆p u := div | u|p−2 u . Namely, if ρ is a nonnegative weight such that −∆p ρ ≥ 0, then the Hardy inequality c M |u|p | ρ|p dvg ≤ ρp | u|p dvg , ∞ u ∈ C0 (M ). M holds. We show concrete examples specializing the function ρ. Our approach allows to obtain a characterization of p-hyperbolic manifolds as well as other inequalities related to Caccioppoli inequalities, weighted Gagliardo- Nirenberg inequalities, uncertain principle and first order Caffarelli-Kohn-Nirenberg interpolation inequality
We study Hardy-type inequalities associated to the quadratic form of the shifted Laplacian −ΔHN−(N−1...
We study Hardy-type inequalities associated to the quadratic form of the shifted Laplacian −ΔHN−(N−1...
We study Hardy-type inequalities associated to the quadratic form of the shifted Laplacian −ΔHN−(N−1...
We prove a simple sufficient criteria to obtain some Hardy inequalities on Rie- mannian manifolds r...
We prove a simple sufficient criterion to obtain some Hardy inequalities on Riemannian manifolds rel...
We prove some Hardy-type inequalities related to quasilinear second-order degenerate elliptic differ...
We prove some Hardy-type inequalities related to quasilinear second-order degenerate elliptic differ...
In this paper we obtain Hardy, weighted Trudinger-Moser and Caffarelli-Kohn-Nirenberg type inequalit...
We prove optimal improvements of the Hardy inequality on the hyperbolic space. Here, optimal means t...
We prove optimal improvements of the Hardy inequality on the hyperbolic space. Here, optimal means t...
We prove optimal improvements of the Hardy inequality on the hyperbolic space. Here, optimal means t...
We prove optimal improvements of the Hardy inequality on the hyperbolic space. Here, optimal means t...
In this paper we obtain Hardy, weighted Trudinger-Moser and Caffarelli-Kohn-Nirenberg type inequalit...
AbstractWe establish a generalization to Riemannian manifolds of the Caffarelli–Kohn–Nirenberg inequ...
In this paper we give an extension of the classical Caffarelli-Kohn- Nirenberg inequalities: we show...
We study Hardy-type inequalities associated to the quadratic form of the shifted Laplacian −ΔHN−(N−1...
We study Hardy-type inequalities associated to the quadratic form of the shifted Laplacian −ΔHN−(N−1...
We study Hardy-type inequalities associated to the quadratic form of the shifted Laplacian −ΔHN−(N−1...
We prove a simple sufficient criteria to obtain some Hardy inequalities on Rie- mannian manifolds r...
We prove a simple sufficient criterion to obtain some Hardy inequalities on Riemannian manifolds rel...
We prove some Hardy-type inequalities related to quasilinear second-order degenerate elliptic differ...
We prove some Hardy-type inequalities related to quasilinear second-order degenerate elliptic differ...
In this paper we obtain Hardy, weighted Trudinger-Moser and Caffarelli-Kohn-Nirenberg type inequalit...
We prove optimal improvements of the Hardy inequality on the hyperbolic space. Here, optimal means t...
We prove optimal improvements of the Hardy inequality on the hyperbolic space. Here, optimal means t...
We prove optimal improvements of the Hardy inequality on the hyperbolic space. Here, optimal means t...
We prove optimal improvements of the Hardy inequality on the hyperbolic space. Here, optimal means t...
In this paper we obtain Hardy, weighted Trudinger-Moser and Caffarelli-Kohn-Nirenberg type inequalit...
AbstractWe establish a generalization to Riemannian manifolds of the Caffarelli–Kohn–Nirenberg inequ...
In this paper we give an extension of the classical Caffarelli-Kohn- Nirenberg inequalities: we show...
We study Hardy-type inequalities associated to the quadratic form of the shifted Laplacian −ΔHN−(N−1...
We study Hardy-type inequalities associated to the quadratic form of the shifted Laplacian −ΔHN−(N−1...
We study Hardy-type inequalities associated to the quadratic form of the shifted Laplacian −ΔHN−(N−1...