In this paper we review the parallel solution of sparse linear systems, usually deriving by the discretization of ODEIVPs or ODE-BVPs. The approach is based on the concept of parallel factorization of a (block) tridiagonal matrix. This allows to obtain efficient parallel extensions of many known matrix factorizations, and to derive, as a by-product, a unifying approach to the parallel solution of ODEs
Solving large, sparse systems of linear equations of the form Ax b is a key com-ponent in many scie...
As sequential computers seem to be approaching their limits in CPU speed there is increasing intere...
In this paper we review several methods for solving large sparse linear systems arising from discret...
In this paper we review the parallel solution of sparse linear systems, usually deriving by the disc...
AbstractWe formalize the concept of parallel factorization as a set of scalar factorizations. By mea...
We present an overview of parallel direct methods for solving sparse systems of linear equations, fo...
We formalize the concept of patm!kZfitorhztim as a set of scalar factorizations. By means of this co...
In this review paper, we consider some important developments and trends in algorithm design for t...
A few parallel algorithms for solving triangular systems resulting from parallel factorization of sp...
In Part I of this this paper, we proposed a new parallel bidirectional algorithm, based on Cholesky...
We describe a new parallel solver in the class of partition methods for general, nonsingular tridiag...
This book is primarily intended as a research monograph that could also be used in graduate courses ...
The paper deals with parallel approach for the numerical solution of large, sparse, non-symmetric sy...
We survey general techniques and open problems in numerical linear algebra on parallel architectures...
of Dissertation October, 1995 This thesis presents research into parallel linear solvers for block-...
Solving large, sparse systems of linear equations of the form Ax b is a key com-ponent in many scie...
As sequential computers seem to be approaching their limits in CPU speed there is increasing intere...
In this paper we review several methods for solving large sparse linear systems arising from discret...
In this paper we review the parallel solution of sparse linear systems, usually deriving by the disc...
AbstractWe formalize the concept of parallel factorization as a set of scalar factorizations. By mea...
We present an overview of parallel direct methods for solving sparse systems of linear equations, fo...
We formalize the concept of patm!kZfitorhztim as a set of scalar factorizations. By means of this co...
In this review paper, we consider some important developments and trends in algorithm design for t...
A few parallel algorithms for solving triangular systems resulting from parallel factorization of sp...
In Part I of this this paper, we proposed a new parallel bidirectional algorithm, based on Cholesky...
We describe a new parallel solver in the class of partition methods for general, nonsingular tridiag...
This book is primarily intended as a research monograph that could also be used in graduate courses ...
The paper deals with parallel approach for the numerical solution of large, sparse, non-symmetric sy...
We survey general techniques and open problems in numerical linear algebra on parallel architectures...
of Dissertation October, 1995 This thesis presents research into parallel linear solvers for block-...
Solving large, sparse systems of linear equations of the form Ax b is a key com-ponent in many scie...
As sequential computers seem to be approaching their limits in CPU speed there is increasing intere...
In this paper we review several methods for solving large sparse linear systems arising from discret...