Despite intense investigation, the mechanisms governing the mechanical reinforcement of polymers by dispersed nanoparticles have only been partially clarified. This is especially true for the ultimate properties of the nanocomposites, which depend on their resistance to fracture at large deformations. In this work, we adopt molecular dynamics simulations to investigate the mechanical properties of silica/polybutadiene rubber, using a quasi-atomistic model that allows a meaningful description of bond breaking and fracture over relatively large length scales. The behavior of large nanocomposite models is explored systematically by tuning the cross-linking, grafting densities, and nanoparticle concentration. The simulated stress–strain curves ...