In this paper the numerical stability of the orthogonal factorization method for linear equality-constrained quadratic programming problems is studied using a backward error analysis. A perturbation formula for the problem is analyzed; the condition numbers of this formula are examined in order to compare them with the condition numbers of the two matrices of the problem. A class of test problems is also considered in order to show experimentally the behaviour of the method
In questo lavoro si considera la risoluzione numerica di problemi di programmazione quadratica con v...
International audienceThe paper proposes a primal-dual algorithm for solving an equality constrained...
In questo lavoro si considera la risoluzione numerica di problemi di programmazione quadratica con v...
In this paper the numerical stability of the orthogonal factorization method for linear equality-con...
We consider the orthogonal factorization method for linear equality-constrained quadratic programmin...
We consider the orthogonal factorization method for linear equality-constrained quadratic programmin...
A backward error analysis for the orthogonal factorization method for equality constrained quadratic...
A backward error analysis for the orthogonal factorization method for equality constrained quadratic...
Consiglio Nazionale delle Ricerche (CNR). Biblioteca Centrale / CNR - Consiglio Nazionale delle Rich...
The numerical stability of the null space method for linear least-squares problems with linear equal...
The numerical stability of the null space method for linear least-squares problems with linear equal...
In the existing methods for solving Quadratic Programming Problems having linearly factorized object...
A backward error analysis of the direct elimination method for linear equality constrained least squ...
A backward error analysis of the direct elimination method for linear equality constrained least squ...
A simple scheme is proposed for handling nonlinear equality constraints in the context of a previous...
In questo lavoro si considera la risoluzione numerica di problemi di programmazione quadratica con v...
International audienceThe paper proposes a primal-dual algorithm for solving an equality constrained...
In questo lavoro si considera la risoluzione numerica di problemi di programmazione quadratica con v...
In this paper the numerical stability of the orthogonal factorization method for linear equality-con...
We consider the orthogonal factorization method for linear equality-constrained quadratic programmin...
We consider the orthogonal factorization method for linear equality-constrained quadratic programmin...
A backward error analysis for the orthogonal factorization method for equality constrained quadratic...
A backward error analysis for the orthogonal factorization method for equality constrained quadratic...
Consiglio Nazionale delle Ricerche (CNR). Biblioteca Centrale / CNR - Consiglio Nazionale delle Rich...
The numerical stability of the null space method for linear least-squares problems with linear equal...
The numerical stability of the null space method for linear least-squares problems with linear equal...
In the existing methods for solving Quadratic Programming Problems having linearly factorized object...
A backward error analysis of the direct elimination method for linear equality constrained least squ...
A backward error analysis of the direct elimination method for linear equality constrained least squ...
A simple scheme is proposed for handling nonlinear equality constraints in the context of a previous...
In questo lavoro si considera la risoluzione numerica di problemi di programmazione quadratica con v...
International audienceThe paper proposes a primal-dual algorithm for solving an equality constrained...
In questo lavoro si considera la risoluzione numerica di problemi di programmazione quadratica con v...