Size Theory has proven to be a useful framework for shape analysis in the context of pattern recognition. Its main tool is a shape descriptor called size function.Size Theory has been mostly developed in the $1$-dimensional setting, meaning that shapes are studied with respect to functions, defined on the studied objects, with values in $\R$. The potentialities of the $k$-dimensional setting, that is using functions with values in $\R^k$, were not explored until now for lack of an efficient computational approach. In this paper we provide the theoretical results leading to a concise and complete shape descriptor also in the multidimensional case. This is possible because we prove that in Size Theory thecomparison of multidimensional size f...