We consider the Gross-Pitaevskii equation in 1 space dimension with a N-well trapping potential. We prove, in the semiclassical limit, that the finite dimensional eigenspace associated to the lowest N eigenvalues of the linear operator is slightlydeformed by the nonlinear term into an almost invariant manifold M. Precisely, one has that solutions starting on M, or close to it, will remain close to M for times exponentially long with the inverse of the size of the nonlinearity. As heuristically expected theeffective equation onMis a perturbation of a discrete nonlinear Schr\uf6dinger equation. We deduce that when the size of the nonlinearity is large enough then tunneling amongthe wells essentially disappears: that is for almost all solution...