This paper proposes a novel computational method for assessing the predictability of commodity market time series, by predicting the entropy of the series under investigation. Assessing the predictability of a time series is the first mandatory step in order to further apply low-risk and efficient price forecasting methods. According to conventional entropy-based analysis (where the entropy is always ex-post estimated), high entropy values characterize unpredictable series, while more stable series exhibits lesser entropy values. Here, we predict (i.e. ex-ante) the entropy regarding the future behavior of a series, based on the observation of historical data. Our prediction is performed according to the optimum least squares minimization al...