We investigate the optimality problem associated with the best constants in a class of Bohnenblust-Hille-type inequalities for m-linear forms. While germinal estimates indicated an exponential growth, in this work we provide strong evidences to the conjecture that the sharp constants in the classical Bohnenblust-Hille inequality are universally bounded, irrespectively of the value of m; hereafter referred as the Universality Conjecture. In our approach, we introduce the notions of entropy and complexity, designed to measure, to some extent, the complexity of such optimization problems. We show that the notion of entropy is critically connected to the Universality Conjecture; for instance, that if the entropy grows at most exponentially with...
In this paper we prove that the complex polynomial Bohnenblust–Hille constant for 2-homogeneous poly...
Given a Boolean function f:{ -1,1}n → {-1,1}, define the Fourier distribution to be the distribution...
Given a Boolean function f:{ -1,1}n → {-1,1}, define the Fourier distribution to be the distribution...
AbstractThe search of sharp estimates for the constants in the Bohnenblust–Hille inequality, besides...
Abstract. In this paper, among other results, we improve the best known estimates for the constants ...
AbstractThe search for sharp constants for inequalities of the type Littlewoodʼs 4/3 and Bohnenblust...
AbstractThe n-linear Bohnenblust–Hille inequality asserts that there is a constant Cn∈[1,∞) such tha...
Clasificamos las formas 3-lineales extremas y expuestas de la bola unitaria de ℒ(³Ɩ²∞). Introducimos...
The Bohnenblust{Hille inequality guarantees the existence of a function C : N ! [1;+1), correspondin...
The Bohnenblust{Hille inequality guarantees the existence of a function C : N ! [1;+1), correspondin...
AbstractThe search of sharp estimates for the constants in the Bohnenblust–Hille inequality, besides...
In this study we show two classical inequalities, namely Bohnenblust-Hille inequality and Hardy-Lit...
In this study we show two classical inequalities, namely Bohnenblust-Hille inequality and Hardy-Lit...
The Bohnenblust-Hille inequality says that the $\ell^{\frac{2m}{m+1}}$ -norm of the coefficients of ...
Respondemos a una pregunta formulada por S.G. Kim en [3] y mostramos que algunos de los resultados d...
In this paper we prove that the complex polynomial Bohnenblust–Hille constant for 2-homogeneous poly...
Given a Boolean function f:{ -1,1}n → {-1,1}, define the Fourier distribution to be the distribution...
Given a Boolean function f:{ -1,1}n → {-1,1}, define the Fourier distribution to be the distribution...
AbstractThe search of sharp estimates for the constants in the Bohnenblust–Hille inequality, besides...
Abstract. In this paper, among other results, we improve the best known estimates for the constants ...
AbstractThe search for sharp constants for inequalities of the type Littlewoodʼs 4/3 and Bohnenblust...
AbstractThe n-linear Bohnenblust–Hille inequality asserts that there is a constant Cn∈[1,∞) such tha...
Clasificamos las formas 3-lineales extremas y expuestas de la bola unitaria de ℒ(³Ɩ²∞). Introducimos...
The Bohnenblust{Hille inequality guarantees the existence of a function C : N ! [1;+1), correspondin...
The Bohnenblust{Hille inequality guarantees the existence of a function C : N ! [1;+1), correspondin...
AbstractThe search of sharp estimates for the constants in the Bohnenblust–Hille inequality, besides...
In this study we show two classical inequalities, namely Bohnenblust-Hille inequality and Hardy-Lit...
In this study we show two classical inequalities, namely Bohnenblust-Hille inequality and Hardy-Lit...
The Bohnenblust-Hille inequality says that the $\ell^{\frac{2m}{m+1}}$ -norm of the coefficients of ...
Respondemos a una pregunta formulada por S.G. Kim en [3] y mostramos que algunos de los resultados d...
In this paper we prove that the complex polynomial Bohnenblust–Hille constant for 2-homogeneous poly...
Given a Boolean function f:{ -1,1}n → {-1,1}, define the Fourier distribution to be the distribution...
Given a Boolean function f:{ -1,1}n → {-1,1}, define the Fourier distribution to be the distribution...