Dynamic network flows, or network flows over time, constitute an important model for real-world situations in which steady states are unusual, such as urban traffic and the internet. These applications immediately raise the issue of analyzing dynamic network flows from a game-theoretic perspective. In this paper, we study dynamic equilibria in the deterministic fluid queuing model in single-source, single-sink networks—arguably the most basic model for flows over time. In the last decade, we have witnessed significant developments in the theoretical understanding of the model. However, several fundamental questions remain open. One of the most prominent ones concerns the price of anarchy, measured as the worst-case ratio between the minimum...