We consider linear differential-algebraic equations (DAEs) of the form Ex\. = Hx and the Kronecker canonical form (KCF) [L. Kronecker, Sitzungsberichte der K\" oniglich Preu{\ss}ischen Akademie der Wissenschaften zu Berlin, 1890, pp. 1225-1237] of the corresponding matrix pencils sE - H. We also consider linear control systems and their Morse canonical form (MCF) [A. Morse, SIAM J. Control, 11 (1973), pp. 446-465; B. P. Molinari, Internat. J. Control, 28 (1978), pp. 493-510]. For a linear DAE, a procedure called explicitation is proposed, which attaches to any linear DAE a linear control system defined up to a coordinates change, a feedback transformation, and an output injection. Then we compare subspaces associated to a DAE in a geometric...