Given two absolutely continuous nonnegative independent random variables, we define the reversed relevation transform as dual to the relevation transform. We first apply such transforms to the lifetimes of the components of parallel and series systems under suitably proportionality assumptions on the hazards rates. Furthermore, we prove that the (reversed) relevation transform is commutative if and only if the proportional (reversed) hazards rate model holds. By repeated application of the reversed relevation transform we construct a decreasing sequence of random variables which leads to new weighted probability densities. We obtain various relations involving aging notions and stochastic orders. We also exploit the connection o...