We consider the Schroedinger type operator ${mathcal A}=(1+|x|^{alpha})Delta-|x|^{eta}$, for $alpha in [0,2]$ and $eta ge 0$. We prove that, for any $p in (1,infty)$, the minimal realization of operator ${mathcal A}$ in $L^p(R^N)$ generates a strongly continuous analytic semigroup $(T_p(t))_{t ge 0}$. For $alpha in [0,2)$ and $eta ge 2$, we then prove some upper estimates for the heat kernel $k$ associated to the semigroup $(T_p(t))_{t ge 0}$. As a consequence we obtain an estimate for large $|x|$ of the eigenfunctions of ${mathcal A}$. Finally, we extend such estimates to a class of divergence type elliptic operators
We prove that the realization A_p in L^p(R^N) of the Schroedinger type operator A=(1+|x|^{alpha})Del...
We consider the Schr\"odinger type operator (1+|x|^\alpha)\Delta+c|x|^{\alpha-2}, for \alpha> 2, c2...
We consider the Schr\"odinger type operator (1+|x|^\alpha)\Delta+c|x|^{\alpha-2}, for \alpha> 2, c2...
We consider the Schroedinger type operator ${mathcal A}=(1+|x|^{alpha})Delta-|x|^{eta}$, for $alpha ...
We consider the Schroedinger type operator ${mathcal A}=(1+|x|^{alpha})Delta-|x|^{eta}$, for $alpha ...
We consider the Schroedinger type operator ${mathcal A}=(1+|x|^{alpha})Delta-|x|^{eta}$, for $alpha ...
We consider the Schroedinger type operator ${mathcal A}=(1+|x|^{alpha})Delta-|x|^{eta}$, for $alpha ...
We consider the Schroedinger type operator ${mathcal A}=(1+|x|^{alpha})Delta-|x|^{eta}$, for $alpha ...
We consider the Schr\"odinger type operator ${\mathcal A}=(1+|x|^{\alpha})\Delta-|x|^{\beta}$, for ...
We prove optimal heat kernel estimates for the kernel of the Schr\u7fodinger type operator A := (1 +...
We prove optimal heat kernel estimates for the kernel of the Schrodinger type operator A := (1 + |x|...
We prove optimal heat kernel estimates for the kernel of the Schrodinger type operator A := (1 + |x|...
We prove optimal heat kernel estimates for the kernel of the Schrodinger type operator A := (1 + |x|...
We prove optimal heat kernel estimates for the kernel of the Schrodinger type operator A := (1 + |x|...
We consider the Schr\"odinger type operator (1+|x|^\alpha)\Delta+c|x|^{\alpha-2}, for \alpha> 2, c2...
We prove that the realization A_p in L^p(R^N) of the Schroedinger type operator A=(1+|x|^{alpha})Del...
We consider the Schr\"odinger type operator (1+|x|^\alpha)\Delta+c|x|^{\alpha-2}, for \alpha> 2, c2...
We consider the Schr\"odinger type operator (1+|x|^\alpha)\Delta+c|x|^{\alpha-2}, for \alpha> 2, c2...
We consider the Schroedinger type operator ${mathcal A}=(1+|x|^{alpha})Delta-|x|^{eta}$, for $alpha ...
We consider the Schroedinger type operator ${mathcal A}=(1+|x|^{alpha})Delta-|x|^{eta}$, for $alpha ...
We consider the Schroedinger type operator ${mathcal A}=(1+|x|^{alpha})Delta-|x|^{eta}$, for $alpha ...
We consider the Schroedinger type operator ${mathcal A}=(1+|x|^{alpha})Delta-|x|^{eta}$, for $alpha ...
We consider the Schroedinger type operator ${mathcal A}=(1+|x|^{alpha})Delta-|x|^{eta}$, for $alpha ...
We consider the Schr\"odinger type operator ${\mathcal A}=(1+|x|^{\alpha})\Delta-|x|^{\beta}$, for ...
We prove optimal heat kernel estimates for the kernel of the Schr\u7fodinger type operator A := (1 +...
We prove optimal heat kernel estimates for the kernel of the Schrodinger type operator A := (1 + |x|...
We prove optimal heat kernel estimates for the kernel of the Schrodinger type operator A := (1 + |x|...
We prove optimal heat kernel estimates for the kernel of the Schrodinger type operator A := (1 + |x|...
We prove optimal heat kernel estimates for the kernel of the Schrodinger type operator A := (1 + |x|...
We consider the Schr\"odinger type operator (1+|x|^\alpha)\Delta+c|x|^{\alpha-2}, for \alpha> 2, c2...
We prove that the realization A_p in L^p(R^N) of the Schroedinger type operator A=(1+|x|^{alpha})Del...
We consider the Schr\"odinger type operator (1+|x|^\alpha)\Delta+c|x|^{\alpha-2}, for \alpha> 2, c2...
We consider the Schr\"odinger type operator (1+|x|^\alpha)\Delta+c|x|^{\alpha-2}, for \alpha> 2, c2...