Changes in temperature and a variety of other stimuli coordinately induce transcription of a specific set of heat-shock genes in all organisms. In the human fungal pathogen Histoplasma capsulatum, a temperature shift from 25 to 37 degrees C acts not only as a signal that causes transcription of heat-shock genes, but also triggers a morphological mycelium- to yeast-phase transition. The temperature-induced morphological transition may be viewed as a heat-shock response followed by cellular adaptation to a higher temperature. We have found that by inducing thermotolerance, i.e., an initial incubation at 34 degrees C, the thermosensitive attenuated Downs strain of H. capsulatum can be made to resemble those of the more temperature-tolerant G22...