The quantum tricriticality of d-dimensional transverse Ising-like systems is studied by means of a perturbative renormalization group approach focusing on static susceptibility. This allows us to obtain the phase diagram for 3 ≤ d < 4, with a clear location of the critical lines ending in the conventional quantum critical points and in the quantum tricritical one, and of the tricritical line for temperature T ≥ 0. We determine also the critical and the tricritical shift exponents close to the corresponding ground state instabilities. Remarkably, we find a tricritical shift exponent identical to that found in the conventional quantum criticality and, by approaching the quantum tricritical point increasing the non-thermal control parameter r,...