This article is concerned with the mechanical properties of dense, vertically aligned CNT foams subject to one-dimensional compressive loading. We develop a discrete model directly inspired by the micromechanical response reported experimentally for CNT foams, where infinitesimal portions of the tubes are represented by collections of uniform bi-stable springs. Under cyclic loading, the given model predicts an initial elastic deformation, a non-homogeneous buckling regime, and a densification response, accompanied by a hysteretic unloading path. We compute the dynamic dissipation of such a model through an analytic approach. The continuum limit of the microscopic spring chain defines a mesoscopic dissipative element (micro–meso transition) ...