This chapter introduces the use of the bootstrap in a nonlinear, nonparametric regression framework with dependent errors. The aim is to construct approximate confidence intervals for the regression function which is estimated by using a single hidden layer feedforward neural network. In this framework, the use of a standard residual bootstrap scheme is not appropriate and it may lead to results that are not consistent. As an alternative solution, we investigate the AR-Sieve bootstrap and the Moving Block bootstrap, which are used to generate bootstrap replicates with a proper dependence structure. Both approaches are nonparametric bootstrap schemes, a consistent choice when dealing with neural network models which are often used as ...