This paper describes the use of a drone in collecting data for mapping discontinuities within a marble quarry. A topographic survey was carried out in order to guarantee high spatial accuracy in the exterior orientation of images. Photos were taken close to the slopes and at different angles, depending on the orientation of the quarry walls. This approach was used to overcome the problem of shadow areas and to obtain detailed information on any feature desired. Dense 3D point clouds obtained through image processing were used to rebuild the quarry geometry. Discontinuities were then mapped deterministically in detail. Joint attitude interpretation was not always possible due to the regular shape of the cut walls; for every discontinuity set...