Let $V$ be a $2n$-dimensional vector space defined over an arbitrary field $\mathbb{F}$ and $G$ the symplectic group $\mathrm{Sp}(2n,\mathbb{F})$ stabilizing a non-degenerate alternating form $\alpha(.,.)$ of $V$. Let ${\mathcal G}_k$ be the $k$-grassmannian of $\mathrm{PG}(V)$ and $\Delta_k$ the $k$-grassmannian of the $C_n$-building $\Delta$ associated to $G$. Put $W_k:= \wedge^kV$ and $\iota_k:{\mathcal G}_k\rightarrow W_k$ the natural embedding of ${\mathcal G}_k$, sending a $k$-subspace $\langle x_1,...,x_k\rangle$ of $V$ to the 1-subspace $\langle x_1\wedge...\wedge x_k\rangle$ of $W_k$. Let $\varepsilon_k:\Delta_k\rightarrow V_k$ be the embedding of $\Delta_k$ induced by $\iota_k$, where $V_k$ is the subspace of $W_k$ spanned by the ...
Let $V$ be the Weyl module of dimension ${ 2n \choose n}-{2n \choose n-2}$ for the symplectic group ...
Let $V$ be the Weyl module of dimension ${ 2n \choose n}-{2n \choose n-2}$ for the symplectic group ...
Let $V$ be the Weyl module of dimension ${ 2n \choose n}-{2n \choose n-2}$ for the symplectic group ...
Let $V$ be a $2n$-dimensional vector space defined over an arbitrary field $\mathbb{F}$ and $G$ the ...
Let $V$ be a $2n$-dimensional vector space defined over an arbitrary field $\mathbb{F}$ and $G$ the ...
Let $V$ be a $2n$-dimensional vector space over a field $\F$ and $\xi$ a non-degenerate alternating ...
Let $V$ be a $2n$-dimensional vector space over a field $\F$ and $\xi$ a non-degenerate alternating ...
Let $V$ be a $2n$-dimensional vector space over a field $\F$ and $\xi$ a non-degenerate alternating ...
Let $V$ be a $2n$-dimensional vector space over a field $\mathbb{F}$ equipped with a non-degenerate...
Let $V$ be a $2n$-dimensional vector space over a field $\mathbb{F}$ equipped with a non-degenerate...
Let $V$ be a $2n$-dimensional vector space over a field $\mathbb{F}$ equipped with a non-degenerate...
AbstractLet V be a 2n-dimensional vector space (n⩾1) over a field K equipped with a nondegenerate al...
Let $V_k$ be the Weyl module of dimension ${2n\choose k}-{2n\choose k-2}$ for the group $G = \mathrm...
Let $V_k$ be the Weyl module of dimension ${2n\choose k}-{2n\choose k-2}$ for the group $G = \mathrm...
Let $V_k$ be the Weyl module of dimension ${2n\choose k}-{2n\choose k-2}$ for the group $G = \mathrm...
Let $V$ be the Weyl module of dimension ${ 2n \choose n}-{2n \choose n-2}$ for the symplectic group ...
Let $V$ be the Weyl module of dimension ${ 2n \choose n}-{2n \choose n-2}$ for the symplectic group ...
Let $V$ be the Weyl module of dimension ${ 2n \choose n}-{2n \choose n-2}$ for the symplectic group ...
Let $V$ be a $2n$-dimensional vector space defined over an arbitrary field $\mathbb{F}$ and $G$ the ...
Let $V$ be a $2n$-dimensional vector space defined over an arbitrary field $\mathbb{F}$ and $G$ the ...
Let $V$ be a $2n$-dimensional vector space over a field $\F$ and $\xi$ a non-degenerate alternating ...
Let $V$ be a $2n$-dimensional vector space over a field $\F$ and $\xi$ a non-degenerate alternating ...
Let $V$ be a $2n$-dimensional vector space over a field $\F$ and $\xi$ a non-degenerate alternating ...
Let $V$ be a $2n$-dimensional vector space over a field $\mathbb{F}$ equipped with a non-degenerate...
Let $V$ be a $2n$-dimensional vector space over a field $\mathbb{F}$ equipped with a non-degenerate...
Let $V$ be a $2n$-dimensional vector space over a field $\mathbb{F}$ equipped with a non-degenerate...
AbstractLet V be a 2n-dimensional vector space (n⩾1) over a field K equipped with a nondegenerate al...
Let $V_k$ be the Weyl module of dimension ${2n\choose k}-{2n\choose k-2}$ for the group $G = \mathrm...
Let $V_k$ be the Weyl module of dimension ${2n\choose k}-{2n\choose k-2}$ for the group $G = \mathrm...
Let $V_k$ be the Weyl module of dimension ${2n\choose k}-{2n\choose k-2}$ for the group $G = \mathrm...
Let $V$ be the Weyl module of dimension ${ 2n \choose n}-{2n \choose n-2}$ for the symplectic group ...
Let $V$ be the Weyl module of dimension ${ 2n \choose n}-{2n \choose n-2}$ for the symplectic group ...
Let $V$ be the Weyl module of dimension ${ 2n \choose n}-{2n \choose n-2}$ for the symplectic group ...