In this paper, we will consider the universal approximation properties of a recently introduced neural network model called graph neural network (GNN) which can be used to process structured data inputs, e.g. acyclic graph, cyclic graph, directed or un-directed graphs. This class of neural networks implements a function (G, n) 2 IRm that maps a graph Gand one of its nodes n onto an m-dimensional Euclidean space. We characterize the functions that can be approximated by GNNs, in probability, up to any prescribed degree of precision. This set contains the maps that satisfy a property, called preservation of the unfolding equivalence, and includes most of the practically useful functions on graphs; the only known exception is when the input gr...