In recent works several authors have proposed the use of precise boundary conditions (BCs) for blurring models, and they proved that the resulting choice (Neumann or reflective, antireflective) leads to fast algorithms both for deblurring and for detecting the regularization parameters in presence of noise. When considering a symmetric point spread function, the crucial fact is that such BCs are related to fast trigonometric transforms. In this paper we combine the use of precise BCs with the total variation (TV) approach in order to preserve the jumps of the given signal (edges of the given image) as much as possible. We consider a classic fixed point method with a preconditioned Krylov method (usually the conjugate gradient method) for th...