Ce document est une serie de remarques sur certaines variétés, leur caractere non conformement plat, leur topologie. Aussi ce document parle de l'orientabilité des boules géodésiques, des traces, de la formule de Stokes et de la fonction distance au bord.We give some remarks on some manifolds K3 surfaces, Complex projective spaces, real projective space and Torus and the classification of two dimensional Riemannian surfaces, Green functions and the Stokes formula. We also, talk about traces of Sobolev spaces, the distance function, the notion of degree and a duality theorem, the variational formulation and conformal map in dimension 2, the metric on the boundary of a Lipschitz domain and polar geodesic coordinates and the Gauss-Bonnet form...
We approach the study of totally real immersions of smooth manifolds into holomorphic Riemannian spa...
22 pagesA Ricci surface is a Riemannian 2-manifold $(M,g)$ whose Gaussian curvature $K$ satisfies $K...
22 pagesA Ricci surface is a Riemannian 2-manifold $(M,g)$ whose Gaussian curvature $K$ satisfies $K...
1.1. The Stokes Theorem. Let M be a C ∞ manifold of dimension m. Let U ⊆ M be an open subset of M. W...
On étudie les surfaces plates à singularités coniques, leur géométrie, leur espaces des déformations...
On étudie les surfaces plates à singularités coniques, leur géométrie, leur espaces des déformations...
On étudie les surfaces plates à singularités coniques, leur géométrie, leur espaces des déformations...
This book is a posthumous publication of a classic by Prof. Shoshichi Kobayashi, who taught at U.C. ...
We study flat surfaces with conical singularities, their geometry, their deformation spaces and thei...
On étudie les surfaces plates à singularités coniques, leur géométrie, leur espaces des déformations...
I will present recent work with Kleiner in which we verify two topological conjectures using Ricci f...
I will present recent work with Kleiner in which we verify two topological conjectures using Ricci f...
Abstract. Using only fairly simple and elementary considera-tions- essentially from first year under...
We discuss aspects of the L"2-Stokes theorem on certain manifolds with singularities. We show t...
Abstract: We provide the description of the certain real algebraic variety in R3. This var...
We approach the study of totally real immersions of smooth manifolds into holomorphic Riemannian spa...
22 pagesA Ricci surface is a Riemannian 2-manifold $(M,g)$ whose Gaussian curvature $K$ satisfies $K...
22 pagesA Ricci surface is a Riemannian 2-manifold $(M,g)$ whose Gaussian curvature $K$ satisfies $K...
1.1. The Stokes Theorem. Let M be a C ∞ manifold of dimension m. Let U ⊆ M be an open subset of M. W...
On étudie les surfaces plates à singularités coniques, leur géométrie, leur espaces des déformations...
On étudie les surfaces plates à singularités coniques, leur géométrie, leur espaces des déformations...
On étudie les surfaces plates à singularités coniques, leur géométrie, leur espaces des déformations...
This book is a posthumous publication of a classic by Prof. Shoshichi Kobayashi, who taught at U.C. ...
We study flat surfaces with conical singularities, their geometry, their deformation spaces and thei...
On étudie les surfaces plates à singularités coniques, leur géométrie, leur espaces des déformations...
I will present recent work with Kleiner in which we verify two topological conjectures using Ricci f...
I will present recent work with Kleiner in which we verify two topological conjectures using Ricci f...
Abstract. Using only fairly simple and elementary considera-tions- essentially from first year under...
We discuss aspects of the L"2-Stokes theorem on certain manifolds with singularities. We show t...
Abstract: We provide the description of the certain real algebraic variety in R3. This var...
We approach the study of totally real immersions of smooth manifolds into holomorphic Riemannian spa...
22 pagesA Ricci surface is a Riemannian 2-manifold $(M,g)$ whose Gaussian curvature $K$ satisfies $K...
22 pagesA Ricci surface is a Riemannian 2-manifold $(M,g)$ whose Gaussian curvature $K$ satisfies $K...