Die Spektrale Stochastische Finite Elemente Methode (SSFEM) ist eine der bedeutendsten Verfahren zur Lösung partieller Differentialgleichungen mit stochastischen Parametern. In ihrer klassischen Form unterliegt sie dem Fluch der Dimension. Viele verschiedene Techniken wurden jüngst entwickelt, um dagegen zu steuern und so die Anwendbarkeit der SSFEM auch für hochdimensionale Probleme zu gewährleisten. Diese Techniken umfassen Niedrig-Rang Repräsentationen und eine Reduktion des Lösungsraumes. Wir präsentieren ein Verfahren mit einem schrittweisen Rang-1-Update basierend auf der Varitationsformulierung des Problems. Die resultierende Niedrig-Rang Repräsentation ist hinsichtlich der Energieminimierung zu gegebenem Rang nicht notwendigerweise ...
This work develops numerical techniques for the simulation of systems with stochastic parameters, mo...
Common methods for the calculation of the spectral factorization rely on an approximation of the giv...
Uncertainty quantification has been a topic of significant research in computational engineering sin...
This work is aimed at reducing the dimensionality in the spectral stochastic finite element method (...
International audienceGalerkin stochastic finite elements methods, when dealing with high stochastic...
International audienceGalerkin stochastic finite element methods, when dealing with high stochastic ...
International audienceTensor approximation methods are receiving a growing attention for their use i...
In this paper, we propose a low rank approximation method for efficiently solving stochastic partial...
International audienceStochastic Galerkin methods have become a significant tool for the resolution ...
Spektrale stochastische Methoden haben sich als effizientes Werkzeug zur Modellierung von Systemen m...
The stochastic finite element analysis of elliptic type partial differential equations are considere...
International audienceWe propose a new robust technique for solving stochastic partial differential ...
This research is concerned with the development of subspace projection schemes for efficiently solvi...
International audienceAn eXtended Stochastic Finite Element Method has been recently proposed for th...
The focus of the present work is to develop stochastic reduced basis methods (SRBMs) for solving par...
This work develops numerical techniques for the simulation of systems with stochastic parameters, mo...
Common methods for the calculation of the spectral factorization rely on an approximation of the giv...
Uncertainty quantification has been a topic of significant research in computational engineering sin...
This work is aimed at reducing the dimensionality in the spectral stochastic finite element method (...
International audienceGalerkin stochastic finite elements methods, when dealing with high stochastic...
International audienceGalerkin stochastic finite element methods, when dealing with high stochastic ...
International audienceTensor approximation methods are receiving a growing attention for their use i...
In this paper, we propose a low rank approximation method for efficiently solving stochastic partial...
International audienceStochastic Galerkin methods have become a significant tool for the resolution ...
Spektrale stochastische Methoden haben sich als effizientes Werkzeug zur Modellierung von Systemen m...
The stochastic finite element analysis of elliptic type partial differential equations are considere...
International audienceWe propose a new robust technique for solving stochastic partial differential ...
This research is concerned with the development of subspace projection schemes for efficiently solvi...
International audienceAn eXtended Stochastic Finite Element Method has been recently proposed for th...
The focus of the present work is to develop stochastic reduced basis methods (SRBMs) for solving par...
This work develops numerical techniques for the simulation of systems with stochastic parameters, mo...
Common methods for the calculation of the spectral factorization rely on an approximation of the giv...
Uncertainty quantification has been a topic of significant research in computational engineering sin...