Conics are relevant in many undergraduate course on classical physics, from free fall to Rutherford scattering. A pedagogical derivation of the intrinsic expressions of the curvature radius of different types of conic sections is presented. Our proof is carried out without resorting to any coordinate systems, but rather on using only elementary kinematic concepts together with basics of vector calculus and the very definition of conics. As a byproduct application of the present analysis, a simple and compact deduction of the Newton 'inverse square law' for gravitation from the three Kepler laws is also presented
textCircles, parabolas, ellipses and hyperbolas are conic sections and have many unique properties. ...
The conic sections, as well as the solids obtained by revolving these curves, and many of their surp...
This text presents the classical theory of conics in a modern form. It includes many novel results t...
Conics are relevant in many undergraduate course on classical physics, from free fall to Rutherford ...
Abstract:- Compass-and-straightedge constructions have a long tradition and still are of very genuin...
Polar equations, conic sections, eccentricity, directrixAdjust the eccentricity and the distance bet...
The geometry of Kepler’s problem is elucidated by lifting the motion from the (x, y)-plane to the co...
Abstract: Kepler’s equations are considered as central to Celestial Mechanics since their solutions ...
Conic sections one a group of curves which one generated by slicing a cone with a plane. If the plan...
The subject of dynamics is generally divided into two branches; kinematics which is concerned with t...
In this paper we discuss some issues related to Conic Sections: ellipse, parabola and hyperbole. The...
The study of conic sections can be traced back to ancient Greek mathematicians, usually to Applo-nio...
Knowledge in classical mechanics and general relativityIn this demonstration the trajectories, show...
Two-body orbital trajectories conform to conic sections. However, typically in the literature their ...
Este trabalho é um estudo realizado em torno das principais curvas cônicas estudadas por alunos do e...
textCircles, parabolas, ellipses and hyperbolas are conic sections and have many unique properties. ...
The conic sections, as well as the solids obtained by revolving these curves, and many of their surp...
This text presents the classical theory of conics in a modern form. It includes many novel results t...
Conics are relevant in many undergraduate course on classical physics, from free fall to Rutherford ...
Abstract:- Compass-and-straightedge constructions have a long tradition and still are of very genuin...
Polar equations, conic sections, eccentricity, directrixAdjust the eccentricity and the distance bet...
The geometry of Kepler’s problem is elucidated by lifting the motion from the (x, y)-plane to the co...
Abstract: Kepler’s equations are considered as central to Celestial Mechanics since their solutions ...
Conic sections one a group of curves which one generated by slicing a cone with a plane. If the plan...
The subject of dynamics is generally divided into two branches; kinematics which is concerned with t...
In this paper we discuss some issues related to Conic Sections: ellipse, parabola and hyperbole. The...
The study of conic sections can be traced back to ancient Greek mathematicians, usually to Applo-nio...
Knowledge in classical mechanics and general relativityIn this demonstration the trajectories, show...
Two-body orbital trajectories conform to conic sections. However, typically in the literature their ...
Este trabalho é um estudo realizado em torno das principais curvas cônicas estudadas por alunos do e...
textCircles, parabolas, ellipses and hyperbolas are conic sections and have many unique properties. ...
The conic sections, as well as the solids obtained by revolving these curves, and many of their surp...
This text presents the classical theory of conics in a modern form. It includes many novel results t...