Ultrasound B-mode imaging has been employed to monitor single agents and collective swarms of microrobots in vitro and ex vivo in controlled experimental conditions. However, low contrast and spatial resolution still limit the effective employment of such a method in a medical microrobotic scenario. Doppler-based ultrasound appears as a promising tool for tracking microrobots in echogenic and dynamic environments as biological tissues. In this Letter, we demonstrate that microrobot displacements can be used as a special signature for their visualization within echogenic media, where B-mode fails. To this aim, we induced vibrations of a magnetic soft microrobot through alternated magnetic fields and used ultrasound phase analysis to derive m...