The high dimensionality of modern data introduces significant challenges in descriptive and exploratory data analysis. These challenges gave rise to extensive work on dimensionality reduction and manifold learning aiming to provide low dimensional representations that preserve or uncover intrinsic patterns and structures in the data. In this thesis, we expand the current literature in manifold learning developing two methods called DIG (Dynamical Information Geometry) and GRAE (Geometry Regularized Autoencoders). DIG is a method capable of finding low-dimensional representations of high-frequency multivariate time series data, especially suited for visualization. GRAE is a general framework which splices the well-established machinery from ...