File prefetching based on previous file access patterns has been shown to be an effective means of reducing file system latency by implicitly loading caches with files that are likely to be needed in the near future. Mistaken prefetching requests can be very costly in terms of added performance overheads including increased latency and bandwidth consumption. Such costs of mispredictions are easily overlooked when considering access prediction algorithms only in terms of their accuracy, but we describe a novel algorithm that uses machine learning to not only improve overall prediction accuracy, but as a means to avoid these costly mispredictions. Our algorithm is fully adaptive to changing workloads, and is fully automated in its ability to ...