We consider the solution of linear systems with tensor product structure using a GMRES algorithm. In order to cope with the computational complexity in large dimension both in terms of floating point operations and memory requirement, our algorithm is based on low-rank tensor representation, namely the Tensor Train format. In a backward error analysis framework, we show how the tensor approximation affects the accuracy of the computed solution. With the bacwkward perspective, we investigate the situations where the $d$-dimensional problem to be solved results from the concatenation of a sequence of $(d-1)$-dimensional problems (like parametric linear operator or parametric right-hand side problems), we provide backward error bounds to rela...
Low rank decomposition of tensors is a powerful tool for learning generative models. The uniqueness ...
Les tenseurs sont une généralisation d'ordre supérieur des matrices. Ils apparaissent dans une myria...
L’approximation tensorielle de rang faible joue ces dernières années un rôle importantdans plusieurs...
We consider the solution of linear systems with tensor product structure using a GMRES algorithm. In...
International audienceIn this talk, we will consider the numerical solution of linear systems where ...
We consider the solution of linear systems with tensor product structure using a GMRES algorithm. In...
In the context where the representation of the data is decoupled from the arithmetic used to process...
In the context where the representation of the data is decoupled from the arithmetic used to process...
The tensor train (TT) decomposition is a representation technique for arbitrary tensors, which allow...
In the framework of tensor spaces, we consider orthogonalization kernels to generate an orthogonal b...
This thesis makes several contributions to the resolution of high dimensional problems in scientific...
L'objectif de ce travail est d'établir quelles propriétés théoriques des techniques d'algèbre linéai...
L'objectif de ce travail est d'établir quelles propriétés théoriques des techniques d'algèbre linéai...
Numerical integration is a basic step in the implementation of more complex numerical algorithms sui...
Dans ces dernières années, plusieurs axes de recherches liées aux tenseurs (matrices multidimensionn...
Low rank decomposition of tensors is a powerful tool for learning generative models. The uniqueness ...
Les tenseurs sont une généralisation d'ordre supérieur des matrices. Ils apparaissent dans une myria...
L’approximation tensorielle de rang faible joue ces dernières années un rôle importantdans plusieurs...
We consider the solution of linear systems with tensor product structure using a GMRES algorithm. In...
International audienceIn this talk, we will consider the numerical solution of linear systems where ...
We consider the solution of linear systems with tensor product structure using a GMRES algorithm. In...
In the context where the representation of the data is decoupled from the arithmetic used to process...
In the context where the representation of the data is decoupled from the arithmetic used to process...
The tensor train (TT) decomposition is a representation technique for arbitrary tensors, which allow...
In the framework of tensor spaces, we consider orthogonalization kernels to generate an orthogonal b...
This thesis makes several contributions to the resolution of high dimensional problems in scientific...
L'objectif de ce travail est d'établir quelles propriétés théoriques des techniques d'algèbre linéai...
L'objectif de ce travail est d'établir quelles propriétés théoriques des techniques d'algèbre linéai...
Numerical integration is a basic step in the implementation of more complex numerical algorithms sui...
Dans ces dernières années, plusieurs axes de recherches liées aux tenseurs (matrices multidimensionn...
Low rank decomposition of tensors is a powerful tool for learning generative models. The uniqueness ...
Les tenseurs sont une généralisation d'ordre supérieur des matrices. Ils apparaissent dans une myria...
L’approximation tensorielle de rang faible joue ces dernières années un rôle importantdans plusieurs...