L’approximation tensorielle de rang faible joue ces dernières années un rôle importantdans plusieurs applications, telles que la séparation aveugle de source, les télécommunications, letraitement d’antennes, les neurosciences, la chimiométrie, et l’exploration de données. La décompositiontensorielle Canonique Polyadique est très attractive comparativement à des outils matriciels classiques,notamment pour l’identification de systèmes. Dans cette thèse, nous proposons (i) plusieursalgorithmes pour calculer quelques approximations de rang faible spécifique: approximation de rang-1 itérative et en un nombre fini d’opérations, l’approximation par déflation itérative, et la décompositiontensorielle orthogonale; (ii) une nouvelle stratégie pour ré...
© 1991-2012 IEEE. Tensors or multiway arrays are functions of three or more indices (i,j,k,⋯)-simila...
Tensors are higher order generalization of matrices. They appear in a myriad of applications. The te...
In this thesis the application of novel tensor decomposition and tensor representation techniques in...
Les tenseurs sont une généralisation d'ordre supérieur des matrices. Ils apparaissent dans une myria...
Rapport interne de GIPSA-labBecause of the attractiveness of the canonical polyadic (CP) tensor deco...
The canonical polyadic and rank-$(L_r,L_r,1)$ block term decomposition (CPD and BTD, respectively) a...
International audienceOver the last two decades, tensor-based methods have received growing attentio...
The canonical polyadic and rank-$(L_r,L_r,1)$ block term decomposition (CPD and BTD, respectively) a...
International audienceOver the last two decades, tensor-based methods have received growing attentio...
The canonical polyadic and rank-(Lr,Lr,1) block term decomposition (CPD and BTD, respectively) are t...
International audienceTensors of order r are implicitly used for a long time in Engineering, since d...
Multidimensional data, or tensors, arise natura lly in data analysis applications. Hitchcock&##39;s ...
The canonical polyadic and rank-(Lr,Lr,1) block term decomposition (CPD and BTD, respectively) are t...
The canonical polyadic and rank-(Lr,Lr,1) block term decomposition (CPD and BTD, respectively) are t...
Tensors are higher order generalization of matrices. They appear in a myriad of applications. The te...
© 1991-2012 IEEE. Tensors or multiway arrays are functions of three or more indices (i,j,k,⋯)-simila...
Tensors are higher order generalization of matrices. They appear in a myriad of applications. The te...
In this thesis the application of novel tensor decomposition and tensor representation techniques in...
Les tenseurs sont une généralisation d'ordre supérieur des matrices. Ils apparaissent dans une myria...
Rapport interne de GIPSA-labBecause of the attractiveness of the canonical polyadic (CP) tensor deco...
The canonical polyadic and rank-$(L_r,L_r,1)$ block term decomposition (CPD and BTD, respectively) a...
International audienceOver the last two decades, tensor-based methods have received growing attentio...
The canonical polyadic and rank-$(L_r,L_r,1)$ block term decomposition (CPD and BTD, respectively) a...
International audienceOver the last two decades, tensor-based methods have received growing attentio...
The canonical polyadic and rank-(Lr,Lr,1) block term decomposition (CPD and BTD, respectively) are t...
International audienceTensors of order r are implicitly used for a long time in Engineering, since d...
Multidimensional data, or tensors, arise natura lly in data analysis applications. Hitchcock&##39;s ...
The canonical polyadic and rank-(Lr,Lr,1) block term decomposition (CPD and BTD, respectively) are t...
The canonical polyadic and rank-(Lr,Lr,1) block term decomposition (CPD and BTD, respectively) are t...
Tensors are higher order generalization of matrices. They appear in a myriad of applications. The te...
© 1991-2012 IEEE. Tensors or multiway arrays are functions of three or more indices (i,j,k,⋯)-simila...
Tensors are higher order generalization of matrices. They appear in a myriad of applications. The te...
In this thesis the application of novel tensor decomposition and tensor representation techniques in...