We give the first exact and stability results for a hypergraph Tur\'{a}n problem with infinitely many extremal constructions that are far from each other in edit-distance. This includes an example of triple systems with Tur\'{a}n density $2/9$, thus answering some questions posed by the third and fourth authors and Reiher about the feasible region of hypergraphs. Our results also provide extremal constructions whose shadow density is a transcendental number. Our novel approach is to construct certain multilinear polynomials that attain their maximum (in the standard simplex) on a line segment and then to use these polynomials to define an operation on hypergraphs that gives extremal constructions.Comment: Minor chang