We study balance properties of circular words over alphabets of size greater than two. We give some new characterizations of balanced words connected to the Kawasaki-Ising model and to the notion of derivative of a word. Moreover we consider two different generalizations of the notion of balance, and we find some relations between them. Some of our results can be generalised to non periodic infinite words as well
The Burrows-Wheeler Transform (denoted by BWT) is a well founded mathematical transformation on sequ...
Compression algorithms based on Burrows–Wheeler transform (BWT) take advantage of the fact that the ...
Sturmian words (balanced, non ultimately periodic, innite words) have been widely studied since the ...
We study balance properties of circular words over alphabets of size greater than two. We give some ...
We conjecture that each balanced word on N letters - either arises from a balanced word on two lett...
AbstractOne of the numerous characterizations of Sturmian words is based on the notion of balance. A...
The investigation of the "clustering effect" of the Burrows-Wheeler transform (BWT) leads to study t...
We define the notion of circular words, then consider on such words a constraint derived from the Fi...
In this article we give two different ways of representations of circular words. Representations wit...
General periodic properties of circular words are investigated, while we introduce new notions of we...
AbstractA word u is called 1-balanced if for any two factors v and w of u of equal length, we have −...
peer reviewedOver an alphabet of size 3 we construct an infinite balanced word with critical exponen...
AbstractConsider to construct an infinite sequence, or an infinite word, from a finite set of letter...
We introduce the notion of circular words with a combi-natorial constraint derived from the Zeckendo...
AbstractCompression algorithms based on Burrows–Wheeler transform (BWT) take advantage of the fact t...
The Burrows-Wheeler Transform (denoted by BWT) is a well founded mathematical transformation on sequ...
Compression algorithms based on Burrows–Wheeler transform (BWT) take advantage of the fact that the ...
Sturmian words (balanced, non ultimately periodic, innite words) have been widely studied since the ...
We study balance properties of circular words over alphabets of size greater than two. We give some ...
We conjecture that each balanced word on N letters - either arises from a balanced word on two lett...
AbstractOne of the numerous characterizations of Sturmian words is based on the notion of balance. A...
The investigation of the "clustering effect" of the Burrows-Wheeler transform (BWT) leads to study t...
We define the notion of circular words, then consider on such words a constraint derived from the Fi...
In this article we give two different ways of representations of circular words. Representations wit...
General periodic properties of circular words are investigated, while we introduce new notions of we...
AbstractA word u is called 1-balanced if for any two factors v and w of u of equal length, we have −...
peer reviewedOver an alphabet of size 3 we construct an infinite balanced word with critical exponen...
AbstractConsider to construct an infinite sequence, or an infinite word, from a finite set of letter...
We introduce the notion of circular words with a combi-natorial constraint derived from the Zeckendo...
AbstractCompression algorithms based on Burrows–Wheeler transform (BWT) take advantage of the fact t...
The Burrows-Wheeler Transform (denoted by BWT) is a well founded mathematical transformation on sequ...
Compression algorithms based on Burrows–Wheeler transform (BWT) take advantage of the fact that the ...
Sturmian words (balanced, non ultimately periodic, innite words) have been widely studied since the ...