Graph neural networks are receiving increasing attention as state-of-the-art methods to process graph-structured data. However, similar to other neural networks, they tend to suffer from a high computational cost to perform training. Reservoir computing (RC) is an effective way to define neural networks that are very efficient to train, often obtaining comparable predictive performance with respect to the fully trained counterparts. Different proposals of reservoir graph neural networks have been proposed in the literature. However, their predictive performances are still slightly below the ones of fully trained graph neural networks on many benchmark datasets, arguably because of the oversmoothing problem that arises when iterating over th...