In this paper, a bounded-input bounded-output (BIBO) stability condition for the recursive functional link artificial neural network (FLANN) filter, based on trigonometric expansions, is derived. This filter is considered as a member of the class of causal shift-invariant recursive nonlinear filters whose output depends linearly on the filter coefficients. As for all recursive filters, its stability should be granted or, at least, tested. The relevant conclusion we derive from the stability condition is that the recursive FLANN filter is not affected by instabilities whenever the recursive linear part of the filter is stable. This fact is in contrast with the case of recursive polynomial filters where, in general, specific limitations on t...