Bu tezde, adi diferansiyel denklemlerde spektral kollokasyon yöntemleriyle ilgili bir çalışma sunulmuştur. Bu yöntemler için gerekli klasik ortogonal polinomların (Jacobi, Legendre, Chebyshev, Laguerre ve Hermite polinomları) bazı özellikleri tekrar gözden geçirilerek, Chebyshev polinom sınıfının kullanıldığı duruma karşı gelen türevleme matrisleri Chebyshev noktaları kullanılarak oluşturulmuştur. Bu matrislerin adi diferansiyel denklemler için sınır değer problemlerini çözmede nasıl kullanılacağı örneklendirilmiştir. In this thesis, a survey on spectral collocation methods for ordinary differential equations is presented. Properties of the classical orthogonal polynomials (Jacobi, Legendre, Chebyshev, Laguerre, and Hermite polynom...
ABSTRACT. We reconsider the problem of classifying all classical orthogo-nal polynomial sequences wh...
International audienceIn this work we develop a validated numerics method for the solution of linear...
polinomio caracteŕıstico de una matriz cuadrada de elementos complejos. Palabras clave: Polinomio c...
In this thesis, a survey on pseudospectral methods for differential equations is presented. Properti...
We extend a collocation method for solving a nonlinear ordinar...
In contrast to the h-version most frequently used, a p-version of the Orthogonal Collocation Method ...
A method for numerical solving of boundary values problems of ordinary differential equations based ...
Previous work identified the kind of Jocobi polynomials suitable to solve boundary value problems of...
A matrix method, which is called the Chebyshev-matrix method, for the approximate solution of linear...
Abstract. Previous work identified the kind of Jocobi polynomials suitable to solve boundary value p...
Chebyshev polynomials are used to obtain accurate numerical solutions of ordinary and partial differ...
W pracy przedstawione zostały na początku główne rodziny wielomianów ortogonalnych, tj. Hermite’a, L...
In this thesis, we develop a method for finding approximate particular solutions for second order or...
In this article, a general framework for solving system of ordinary differential equations by implem...
Univariate and multivariate polynomials play a fundamental role in pure and applied mathematics. In ...
ABSTRACT. We reconsider the problem of classifying all classical orthogo-nal polynomial sequences wh...
International audienceIn this work we develop a validated numerics method for the solution of linear...
polinomio caracteŕıstico de una matriz cuadrada de elementos complejos. Palabras clave: Polinomio c...
In this thesis, a survey on pseudospectral methods for differential equations is presented. Properti...
We extend a collocation method for solving a nonlinear ordinar...
In contrast to the h-version most frequently used, a p-version of the Orthogonal Collocation Method ...
A method for numerical solving of boundary values problems of ordinary differential equations based ...
Previous work identified the kind of Jocobi polynomials suitable to solve boundary value problems of...
A matrix method, which is called the Chebyshev-matrix method, for the approximate solution of linear...
Abstract. Previous work identified the kind of Jocobi polynomials suitable to solve boundary value p...
Chebyshev polynomials are used to obtain accurate numerical solutions of ordinary and partial differ...
W pracy przedstawione zostały na początku główne rodziny wielomianów ortogonalnych, tj. Hermite’a, L...
In this thesis, we develop a method for finding approximate particular solutions for second order or...
In this article, a general framework for solving system of ordinary differential equations by implem...
Univariate and multivariate polynomials play a fundamental role in pure and applied mathematics. In ...
ABSTRACT. We reconsider the problem of classifying all classical orthogo-nal polynomial sequences wh...
International audienceIn this work we develop a validated numerics method for the solution of linear...
polinomio caracteŕıstico de una matriz cuadrada de elementos complejos. Palabras clave: Polinomio c...